Cargando…
Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features ext...
Autores principales: | Blasi, Thomas, Hennig, Holger, Summers, Huw D., Theis, Fabian J., Cerveira, Joana, Patterson, James O., Davies, Derek, Filby, Andrew, Carpenter, Anne E., Rees, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729834/ https://www.ncbi.nlm.nih.gov/pubmed/26739115 http://dx.doi.org/10.1038/ncomms10256 |
Ejemplares similares
-
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
por: Hennig, Holger, et al.
Publicado: (2017) -
Data Driven Cell Cycle Model to Quantify the Efficacy of Cancer Therapeutics Targeting Specific Cell-Cycle Phases From Flow Cytometry Results
por: James, David W., et al.
Publicado: (2021) -
Label‐Free Identification of White Blood Cells Using Machine Learning
por: Nassar, Mariam, et al.
Publicado: (2019) -
Reconstructing cell cycle and disease progression using deep learning
por: Eulenberg, Philipp, et al.
Publicado: (2017) -
High-throughput label-free molecular fingerprinting flow cytometry
por: Hiramatsu, Kotaro, et al.
Publicado: (2019)