Cargando…
Computational multiqubit tunnelling in programmable quantum annealers
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729842/ https://www.ncbi.nlm.nih.gov/pubmed/26739797 http://dx.doi.org/10.1038/ncomms10327 |
_version_ | 1782412306409324544 |
---|---|
author | Boixo, Sergio Smelyanskiy, Vadim N. Shabani, Alireza Isakov, Sergei V. Dykman, Mark Denchev, Vasil S. Amin, Mohammad H. Smirnov, Anatoly Yu Mohseni, Masoud Neven, Hartmut |
author_facet | Boixo, Sergio Smelyanskiy, Vadim N. Shabani, Alireza Isakov, Sergei V. Dykman, Mark Denchev, Vasil S. Amin, Mohammad H. Smirnov, Anatoly Yu Mohseni, Masoud Neven, Hartmut |
author_sort | Boixo, Sergio |
collection | PubMed |
description | Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. |
format | Online Article Text |
id | pubmed-4729842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47298422016-03-04 Computational multiqubit tunnelling in programmable quantum annealers Boixo, Sergio Smelyanskiy, Vadim N. Shabani, Alireza Isakov, Sergei V. Dykman, Mark Denchev, Vasil S. Amin, Mohammad H. Smirnov, Anatoly Yu Mohseni, Masoud Neven, Hartmut Nat Commun Article Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Publishing Group 2016-01-07 /pmc/articles/PMC4729842/ /pubmed/26739797 http://dx.doi.org/10.1038/ncomms10327 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Boixo, Sergio Smelyanskiy, Vadim N. Shabani, Alireza Isakov, Sergei V. Dykman, Mark Denchev, Vasil S. Amin, Mohammad H. Smirnov, Anatoly Yu Mohseni, Masoud Neven, Hartmut Computational multiqubit tunnelling in programmable quantum annealers |
title | Computational multiqubit tunnelling in programmable quantum annealers |
title_full | Computational multiqubit tunnelling in programmable quantum annealers |
title_fullStr | Computational multiqubit tunnelling in programmable quantum annealers |
title_full_unstemmed | Computational multiqubit tunnelling in programmable quantum annealers |
title_short | Computational multiqubit tunnelling in programmable quantum annealers |
title_sort | computational multiqubit tunnelling in programmable quantum annealers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729842/ https://www.ncbi.nlm.nih.gov/pubmed/26739797 http://dx.doi.org/10.1038/ncomms10327 |
work_keys_str_mv | AT boixosergio computationalmultiqubittunnellinginprogrammablequantumannealers AT smelyanskiyvadimn computationalmultiqubittunnellinginprogrammablequantumannealers AT shabanialireza computationalmultiqubittunnellinginprogrammablequantumannealers AT isakovsergeiv computationalmultiqubittunnellinginprogrammablequantumannealers AT dykmanmark computationalmultiqubittunnellinginprogrammablequantumannealers AT denchevvasils computationalmultiqubittunnellinginprogrammablequantumannealers AT aminmohammadh computationalmultiqubittunnellinginprogrammablequantumannealers AT smirnovanatolyyu computationalmultiqubittunnellinginprogrammablequantumannealers AT mohsenimasoud computationalmultiqubittunnellinginprogrammablequantumannealers AT nevenhartmut computationalmultiqubittunnellinginprogrammablequantumannealers |