Cargando…

Computational multiqubit tunnelling in programmable quantum annealers

Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not...

Descripción completa

Detalles Bibliográficos
Autores principales: Boixo, Sergio, Smelyanskiy, Vadim N., Shabani, Alireza, Isakov, Sergei V., Dykman, Mark, Denchev, Vasil S., Amin, Mohammad H., Smirnov, Anatoly Yu, Mohseni, Masoud, Neven, Hartmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729842/
https://www.ncbi.nlm.nih.gov/pubmed/26739797
http://dx.doi.org/10.1038/ncomms10327
_version_ 1782412306409324544
author Boixo, Sergio
Smelyanskiy, Vadim N.
Shabani, Alireza
Isakov, Sergei V.
Dykman, Mark
Denchev, Vasil S.
Amin, Mohammad H.
Smirnov, Anatoly Yu
Mohseni, Masoud
Neven, Hartmut
author_facet Boixo, Sergio
Smelyanskiy, Vadim N.
Shabani, Alireza
Isakov, Sergei V.
Dykman, Mark
Denchev, Vasil S.
Amin, Mohammad H.
Smirnov, Anatoly Yu
Mohseni, Masoud
Neven, Hartmut
author_sort Boixo, Sergio
collection PubMed
description Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.
format Online
Article
Text
id pubmed-4729842
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47298422016-03-04 Computational multiqubit tunnelling in programmable quantum annealers Boixo, Sergio Smelyanskiy, Vadim N. Shabani, Alireza Isakov, Sergei V. Dykman, Mark Denchev, Vasil S. Amin, Mohammad H. Smirnov, Anatoly Yu Mohseni, Masoud Neven, Hartmut Nat Commun Article Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Publishing Group 2016-01-07 /pmc/articles/PMC4729842/ /pubmed/26739797 http://dx.doi.org/10.1038/ncomms10327 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Boixo, Sergio
Smelyanskiy, Vadim N.
Shabani, Alireza
Isakov, Sergei V.
Dykman, Mark
Denchev, Vasil S.
Amin, Mohammad H.
Smirnov, Anatoly Yu
Mohseni, Masoud
Neven, Hartmut
Computational multiqubit tunnelling in programmable quantum annealers
title Computational multiqubit tunnelling in programmable quantum annealers
title_full Computational multiqubit tunnelling in programmable quantum annealers
title_fullStr Computational multiqubit tunnelling in programmable quantum annealers
title_full_unstemmed Computational multiqubit tunnelling in programmable quantum annealers
title_short Computational multiqubit tunnelling in programmable quantum annealers
title_sort computational multiqubit tunnelling in programmable quantum annealers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729842/
https://www.ncbi.nlm.nih.gov/pubmed/26739797
http://dx.doi.org/10.1038/ncomms10327
work_keys_str_mv AT boixosergio computationalmultiqubittunnellinginprogrammablequantumannealers
AT smelyanskiyvadimn computationalmultiqubittunnellinginprogrammablequantumannealers
AT shabanialireza computationalmultiqubittunnellinginprogrammablequantumannealers
AT isakovsergeiv computationalmultiqubittunnellinginprogrammablequantumannealers
AT dykmanmark computationalmultiqubittunnellinginprogrammablequantumannealers
AT denchevvasils computationalmultiqubittunnellinginprogrammablequantumannealers
AT aminmohammadh computationalmultiqubittunnellinginprogrammablequantumannealers
AT smirnovanatolyyu computationalmultiqubittunnellinginprogrammablequantumannealers
AT mohsenimasoud computationalmultiqubittunnellinginprogrammablequantumannealers
AT nevenhartmut computationalmultiqubittunnellinginprogrammablequantumannealers