Cargando…
Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico
Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni–Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobact...
Autores principales: | Tamura, Takashi, Tsunekawa, Naoki, Nemoto, Michiko, Inagaki, Kenji, Hirano, Toshiyuki, Sato, Fumitoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730141/ https://www.ncbi.nlm.nih.gov/pubmed/26818780 http://dx.doi.org/10.1038/srep19742 |
Ejemplares similares
-
Synthetic Active Site Model of the [NiFeSe] Hydrogenase
por: Wombwell, Claire, et al.
Publicado: (2015) -
Studying O(2) pathways in [NiFe]- and [NiFeSe]-hydrogenases
por: Barbosa, Tiago M., et al.
Publicado: (2020) -
Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites
por: Yang, Xuemei, et al.
Publicado: (2018) -
Protection and Reactivation of the [NiFeSe] Hydrogenase
from Desulfovibrio vulgaris Hildenborough under Oxidative
Conditions
por: Ruff, Adrian, et al.
Publicado: (2017) -
Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O(2) Stability for Triple‐Protected High‐Current‐Density H(2)‐Oxidation Bioanodes
por: Ruff, Adrian, et al.
Publicado: (2020)