Cargando…

Estimating the minimum control count of random network models

The study of controllability of complex networks has introduced the minimum number of controls required for full controllability as a new network measure of interest. This network measure, like many others, is non-trivial to compute. As a result, establishing the significance of minimum control coun...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruths, Derek, Ruths, Justin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730149/
https://www.ncbi.nlm.nih.gov/pubmed/26817434
http://dx.doi.org/10.1038/srep19818
Descripción
Sumario:The study of controllability of complex networks has introduced the minimum number of controls required for full controllability as a new network measure of interest. This network measure, like many others, is non-trivial to compute. As a result, establishing the significance of minimum control counts (MCCs) in real networks using random network null models is expensive. Here we derive analytic estimates for the expected MCCs of networks drawn from three commonly-used random network models. Our estimates show good agreement with exact control counts. Furthermore, the analytic expressions we derive offer insights into the structures within each random network model that induce the need for controls.