Cargando…
Morphological and Electrical Characterization of MWCNT Papers and Pellets
Six types of commercially available multiwall carbon nanotube soot were obtained and prepared into buckypapers by pellet pressing and by filtration into a paper. These samples were evaluated with respect to thickness, compressibility and electrical conductivity. DC conductivity results by two-point...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730683/ https://www.ncbi.nlm.nih.gov/pubmed/26958452 http://dx.doi.org/10.6028/jres.120.019 |
Sumario: | Six types of commercially available multiwall carbon nanotube soot were obtained and prepared into buckypapers by pellet pressing and by filtration into a paper. These samples were evaluated with respect to thickness, compressibility and electrical conductivity. DC conductivity results by two-point and four-point (van der Pauw) measurement methods as a function of preparation parameters are presented. Topology was investigated qualitatively by way of scanning electron microscopy and helium ion microscopy and from this, some generalizations about the nanotube structural properties and manufacturing technique with respect to conductivity are given. |
---|