Cargando…

Assessing the daily stability of the cortisol awakening response in a controlled environment

BACKGROUND: Levels of cortisol, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, display a sharp increase immediately upon awakening, known as the cortisol awakening response (CAR). The daily stability of the CAR is potentially influenced by a range of methodological factors, includ...

Descripción completa

Detalles Bibliográficos
Autores principales: Elder, Greg J., Ellis, Jason G., Barclay, Nicola L., Wetherell, Mark A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730747/
https://www.ncbi.nlm.nih.gov/pubmed/26818772
http://dx.doi.org/10.1186/s40359-016-0107-6
Descripción
Sumario:BACKGROUND: Levels of cortisol, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, display a sharp increase immediately upon awakening, known as the cortisol awakening response (CAR). The daily stability of the CAR is potentially influenced by a range of methodological factors, including light exposure, participant adherence, sleep duration and nocturnal awakenings, making inferences about variations in the CAR difficult. The aim of the present study was to determine the daily stability of multiple measurement indices of the CAR in a highly-controlled sleep laboratory environment. A secondary aim was to examine the association between objective sleep continuity and sleep architecture, and the CAR. METHODS: The CAR was assessed in 15 healthy normal sleepers (seven male, eight female, M(age) = 23.67 ± 3.49 years) on three consecutive weekday mornings. Sleep was measured objectively using polysomnography. Saliva samples were obtained at awakening, +15, +30, +45 and +60 min, from which multiple CAR measurement indices were derived: cortisol levels at each time point, awakening cortisol levels, the mean increase in cortisol levels (MnInc) and total cortisol secretion during the measurement period. Morning 2 and Morning 3 awakening cortisol levels, MnInc and total cortisol secretion were compared and the relationship between Night 1 and Night 2 objective measures of sleep continuity and architecture, and the subsequent CAR, was also assessed. RESULTS: There were no differences in cortisol levels at each time point, or total cortisol secretion during the CAR period, between Morning 2 and Morning 3. Awakening cortisol levels were lower, and the MnInc was higher, on Morning 3. Morning 2 and Morning 3 awakening levels (r = 0.77) and total cortisol secretion (r = 0.82), but not the magnitude of increase, were positively associated. CONCLUSIONS: The stability of the CAR profile and total cortisol secretion, but not awakening cortisol levels or the magnitude of increase, was demonstrated across two consecutive mornings of measurement in a highly-controlled environment. Awakening cortisol levels, and the magnitude of increase, may be sensitive to differences in daily activities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40359-016-0107-6) contains supplementary material, which is available to authorized users.