Cargando…
The future of nanosized radiation enhancers
Radiotherapy has a universal and predictable mode of action, that is, a physical mode of action consisting of the deposit of a dose of energy in tissues. Tumour cell damage is proportional to the energy dose. However, the main limitation of radiotherapy is the lack of spatial control of the depositi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730967/ https://www.ncbi.nlm.nih.gov/pubmed/26248871 http://dx.doi.org/10.1259/bjr.20150171 |
Sumario: | Radiotherapy has a universal and predictable mode of action, that is, a physical mode of action consisting of the deposit of a dose of energy in tissues. Tumour cell damage is proportional to the energy dose. However, the main limitation of radiotherapy is the lack of spatial control of the deposition of energy, that is, it penetrates the healthy tissues, damages them and renders unfeasible delivery of an efficient energy dose when tumours are close to important anatomical structures. True nanosized radiation enhancers may represent a disruptive approach to broaden the therapeutic window of radiation therapy. They offer the possibility of entering tumour cells and depositing high amounts of energy in the tumour only when exposed to ionizing radiations (on/off activity). They may unlock the potential of radiation therapy by rendering the introduction of a greater energy dose, exactly within the tumour structure without passing through surrounding tissues feasible. Several nanosized radiation enhancers have been studied in in vitro and in vivo models with positive results. One agent has received the authorization to conduct clinical trials for human use. Opportunities to improve outcomes for patients receiving radiotherapy, to create new standards of care and to offer solutions to new patient populations are looked over here. |
---|