Cargando…

Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy

Generalized arterial calcification of infancy (GACI) is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene resulting in reduced plasma inorganic pyrophosphate levels. We previously characterized the Enpp1(asj) mutant mouse as a model of GACI, and we have now explore...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qiaoli, Kingman, Joshua, Sundberg, John P., Levine, Michael A., Uitto, Jouni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731049/
https://www.ncbi.nlm.nih.gov/pubmed/26763447
http://dx.doi.org/10.1038/JID.2015.377
Descripción
Sumario:Generalized arterial calcification of infancy (GACI) is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene resulting in reduced plasma inorganic pyrophosphate levels. We previously characterized the Enpp1(asj) mutant mouse as a model of GACI, and we have now explored the potential efficacy of bisphosphonates, non-hydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. These mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined bymicrocomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay in vitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in GACI caused by ENPP1 mutations.