Cargando…
Prior Design for Dependent Dirichlet Processes: An Application to Marathon Modeling
This paper presents a novel application of Bayesian nonparametrics (BNP) for marathon data modeling. We make use of two well-known BNP priors, the single-p dependent Dirichlet process and the hierarchical Dirichlet process, in order to address two different problems. First, we study the impact of ag...
Autores principales: | F. Pradier, Melanie, J. R. Ruiz, Francisco, Perez-Cruz, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731079/ https://www.ncbi.nlm.nih.gov/pubmed/26821155 http://dx.doi.org/10.1371/journal.pone.0147402 |
Ejemplares similares
-
A Dirichlet Process Prior Approach for Covariate Selection
por: Cabras, Stefano
Publicado: (2020) -
Bayesian estimation in animal breeding using the Dirichlet process prior for correlated random effects
por: Merwe, Abraham Johannes van der, et al.
Publicado: (2003) -
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution
por: Baerenbold, Oliver, et al.
Publicado: (2022) -
Dirichlet process model for joint haplotype inference and GWAS
por: Sahu, Avinash Das, et al.
Publicado: (2012) -
Hierarchical Dirichlet process model for gene expression clustering
por: Wang, Liming, et al.
Publicado: (2013)