Cargando…
Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs
Understanding the functions of a brain region requires knowing the neural representations of its myriad inputs, local neurons, and outputs. Primary visual cortex (V1) has long been thought to compute visual orientation from untuned thalamic inputs, but very few thalamic inputs have been measured in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731241/ https://www.ncbi.nlm.nih.gov/pubmed/26691829 http://dx.doi.org/10.1038/nn.4196 |
_version_ | 1782412524724944896 |
---|---|
author | Sun, Wenzhi Tan, Zhongchao Mensh, Brett D. Ji, Na |
author_facet | Sun, Wenzhi Tan, Zhongchao Mensh, Brett D. Ji, Na |
author_sort | Sun, Wenzhi |
collection | PubMed |
description | Understanding the functions of a brain region requires knowing the neural representations of its myriad inputs, local neurons, and outputs. Primary visual cortex (V1) has long been thought to compute visual orientation from untuned thalamic inputs, but very few thalamic inputs have been measured in any mammal. We determined the response properties of ~28,000 thalamic boutons and ~4,000 cortical neurons in layers 1–5 of awake mouse V1. With adaptive optics allowing accurate measurement of bouton activity deep in cortex, we found that around half of the boutons in the main thalamorecipient L4 carry orientation-tuned information, and their orientation/direction biases are also dominant in the L4 neuron population, suggesting that these neurons may inherit their selectivity from tuned thalamic inputs. Cortical neurons in all layers exhibited sharper tuning than thalamic boutons and a greater diversity of preferred orientations. Our results provide data-rich constraints for refining mechanistic models of cortical computation. |
format | Online Article Text |
id | pubmed-4731241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-47312412016-06-21 Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs Sun, Wenzhi Tan, Zhongchao Mensh, Brett D. Ji, Na Nat Neurosci Article Understanding the functions of a brain region requires knowing the neural representations of its myriad inputs, local neurons, and outputs. Primary visual cortex (V1) has long been thought to compute visual orientation from untuned thalamic inputs, but very few thalamic inputs have been measured in any mammal. We determined the response properties of ~28,000 thalamic boutons and ~4,000 cortical neurons in layers 1–5 of awake mouse V1. With adaptive optics allowing accurate measurement of bouton activity deep in cortex, we found that around half of the boutons in the main thalamorecipient L4 carry orientation-tuned information, and their orientation/direction biases are also dominant in the L4 neuron population, suggesting that these neurons may inherit their selectivity from tuned thalamic inputs. Cortical neurons in all layers exhibited sharper tuning than thalamic boutons and a greater diversity of preferred orientations. Our results provide data-rich constraints for refining mechanistic models of cortical computation. 2015-12-21 2016-02 /pmc/articles/PMC4731241/ /pubmed/26691829 http://dx.doi.org/10.1038/nn.4196 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Sun, Wenzhi Tan, Zhongchao Mensh, Brett D. Ji, Na Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs |
title | Thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
title_full | Thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
title_fullStr | Thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
title_full_unstemmed | Thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
title_short | Thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
title_sort | thalamus provides layer 4 of primary visual cortex with orientation-
and direction-tuned inputs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731241/ https://www.ncbi.nlm.nih.gov/pubmed/26691829 http://dx.doi.org/10.1038/nn.4196 |
work_keys_str_mv | AT sunwenzhi thalamusprovideslayer4ofprimaryvisualcortexwithorientationanddirectiontunedinputs AT tanzhongchao thalamusprovideslayer4ofprimaryvisualcortexwithorientationanddirectiontunedinputs AT menshbrettd thalamusprovideslayer4ofprimaryvisualcortexwithorientationanddirectiontunedinputs AT jina thalamusprovideslayer4ofprimaryvisualcortexwithorientationanddirectiontunedinputs |