Cargando…

Na,K-ATPase Isozymes in Colorectal Cancer and Liver Metastases

The goal of this study was to define Na,K-ATPase α and β subunit isoform expression and isozyme composition in colorectal cancer cells and liver metastases. The α1, α3, and β1 isoforms were the most highly expressed in tumor cells and metastases; in the plasma membrane of non-neoplastic cells and ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker Bechmann, Marc, Rotoli, Deborah, Morales, Manuel, Maeso, María del Carmen, García, María del Pino, Ávila, Julio, Mobasheri, Ali, Martín-Vasallo, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731494/
https://www.ncbi.nlm.nih.gov/pubmed/26858653
http://dx.doi.org/10.3389/fphys.2016.00009
Descripción
Sumario:The goal of this study was to define Na,K-ATPase α and β subunit isoform expression and isozyme composition in colorectal cancer cells and liver metastases. The α1, α3, and β1 isoforms were the most highly expressed in tumor cells and metastases; in the plasma membrane of non-neoplastic cells and mainly in a cytoplasmic location in tumor cells. α1β1 and α3β1 isozymes found in tumor and metastatic cells exhibit the highest and lowest Na(+) affinity respectively and the highest K(+) affinity. Mesenchymal cell isozymes possess an intermediate Na(+) affinity and a low K(+) affinity. In cancer, these ions are likely to favor optimal conditions for the function of nuclear enzymes involved in mitosis, especially a high intra-nuclear K(+) concentration. A major and striking finding of this study was that in liver, metastasized CRC cells express the α3β1 isozyme. Thus, the α3β1 isozyme could potentially serve as a novel exploratory biomarker of CRC metastatic cells in liver.