Cargando…
A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data
Independent Component analysis (ICA) is a widely used technique for separating signals that have been mixed together. In this manuscript, we propose a novel ICA algorithm using density estimation and maximum likelihood, where the densities of the signals are estimated via p-spline based histogram sm...
Autores principales: | Li, Shanshan, Chen, Shaojie, Yue, Chen, Caffo, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731731/ https://www.ncbi.nlm.nih.gov/pubmed/26858592 http://dx.doi.org/10.3389/fnins.2016.00015 |
Ejemplares similares
-
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
Parallel group independent component analysis for massive fMRI data sets
por: Chen, Shaojie, et al.
Publicado: (2017) -
Applying Independent Component Analysis to Clinical fMRI at 7 T
por: Robinson, Simon Daniel, et al.
Publicado: (2013) -
A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data
por: Wang, Jing, et al.
Publicado: (2016) -
A sub+cortical fMRI‐based surface parcellation
por: Lewis, John D., et al.
Publicado: (2021)