Cargando…

Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials

Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement o...

Descripción completa

Detalles Bibliográficos
Autores principales: Woll, K., Bergamaschi, A., Avchachov, K., Djurabekova, F., Gier, S., Pauly, C., Leibenguth, P., Wagner, C., Nordlund, K., Mücklich, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731779/
https://www.ncbi.nlm.nih.gov/pubmed/26822309
http://dx.doi.org/10.1038/srep19535
_version_ 1782412589282623488
author Woll, K.
Bergamaschi, A.
Avchachov, K.
Djurabekova, F.
Gier, S.
Pauly, C.
Leibenguth, P.
Wagner, C.
Nordlund, K.
Mücklich, F.
author_facet Woll, K.
Bergamaschi, A.
Avchachov, K.
Djurabekova, F.
Gier, S.
Pauly, C.
Leibenguth, P.
Wagner, C.
Nordlund, K.
Mücklich, F.
author_sort Woll, K.
collection PubMed
description Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms(−1) and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material.
format Online
Article
Text
id pubmed-4731779
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47317792016-02-04 Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials Woll, K. Bergamaschi, A. Avchachov, K. Djurabekova, F. Gier, S. Pauly, C. Leibenguth, P. Wagner, C. Nordlund, K. Mücklich, F. Sci Rep Article Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms(−1) and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material. Nature Publishing Group 2016-01-29 /pmc/articles/PMC4731779/ /pubmed/26822309 http://dx.doi.org/10.1038/srep19535 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Woll, K.
Bergamaschi, A.
Avchachov, K.
Djurabekova, F.
Gier, S.
Pauly, C.
Leibenguth, P.
Wagner, C.
Nordlund, K.
Mücklich, F.
Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title_full Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title_fullStr Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title_full_unstemmed Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title_short Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials
title_sort ru/al multilayers integrate maximum energy density and ductility for reactive materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731779/
https://www.ncbi.nlm.nih.gov/pubmed/26822309
http://dx.doi.org/10.1038/srep19535
work_keys_str_mv AT wollk rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT bergamaschia rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT avchachovk rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT djurabekovaf rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT giers rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT paulyc rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT leibenguthp rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT wagnerc rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT nordlundk rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials
AT mucklichf rualmultilayersintegratemaximumenergydensityandductilityforreactivematerials