Cargando…
Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors
Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chines...
Autores principales: | Su, Ruiliang, Chen, Xiang, Cao, Shuai, Zhang, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732133/ https://www.ncbi.nlm.nih.gov/pubmed/26784195 http://dx.doi.org/10.3390/s16010100 |
Ejemplares similares
-
Decision Trees for Binary Subword-Closed Languages
por: Moshkov, Mikhail
Publicado: (2023) -
A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors
por: Cheng, Juan, et al.
Publicado: (2015) -
Sign Language Recognition Using the Electromyographic Signal: A Systematic Literature Review
por: Ben Haj Amor, Amina, et al.
Publicado: (2023) -
Asymptotic Analysis of the kth Subword Complexity
por: Ahmadi, Lida, et al.
Publicado: (2020) -
Confusion2Vec 2.0: Enriching ambiguous spoken language representations with subwords
por: Gurunath Shivakumar, Prashanth, et al.
Publicado: (2022)