Cargando…
A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients
Machine learning methods have been widely used for gait assessment through the estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose and validate a general probabilistic modeling approach for the classification of different pathological gaits. Specific...
Autores principales: | Mannini, Andrea, Trojaniello, Diana, Cereatti, Andrea, Sabatini, Angelo M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732167/ https://www.ncbi.nlm.nih.gov/pubmed/26805847 http://dx.doi.org/10.3390/s16010134 |
Ejemplares similares
-
Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait
por: Trojaniello, Diana, et al.
Publicado: (2014) -
Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors
por: Sabatini, Angelo Maria, et al.
Publicado: (2015) -
Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements
por: Sabatini, Angelo Maria, et al.
Publicado: (2016) -
Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network
por: Guaitolini, Michelangelo, et al.
Publicado: (2019) -
Machine learning based estimation of dynamic balance and gait adaptability in persons with neurological diseases using inertial sensors
por: Liuzzi, Piergiuseppe, et al.
Publicado: (2023)