Cargando…

Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability

Climate-change models predict that tropical ocean temperatures will increase by 2–3°C this century and affect plankton communities that are food for marine fish larvae. Both temperature and food supply can influence development time, growth, and metabolism of marine fishes, particularly during larva...

Descripción completa

Detalles Bibliográficos
Autores principales: McLeod, Ian M., Rummer, Jodie L., Clark, Timothy D., Jones, Geoffrey P., McCormick, Mark I., Wenger, Amelia S., Munday, Philip L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732438/
https://www.ncbi.nlm.nih.gov/pubmed/27293608
http://dx.doi.org/10.1093/conphys/cot024
Descripción
Sumario:Climate-change models predict that tropical ocean temperatures will increase by 2–3°C this century and affect plankton communities that are food for marine fish larvae. Both temperature and food supply can influence development time, growth, and metabolism of marine fishes, particularly during larval stages. However, little is known of the relative importance and potential interacting effects of ocean warming and changes to food supply on the performance of larval fishes. We tested this for larvae of the coral reef anemonefish, Amphiprion percula, in an orthogonal experiment comprising three temperatures and three feeding schedules. Temperatures were chosen to represent present-day summer averages (29.2°C) and end-of-century climate change projections of +1.5°C (30.7°C) and +3°C (32.2°C). Feeding schedules were chosen to represent a reduction in access to food (fed daily, every 2 days, or every 3 days). Overall, larvae took longer to settle at higher temperatures and with less frequent feeding, and there was a significant interaction between these factors. Time to metamorphosis was fastest in the 30.7(o)C and high food availability treatment (10.5 ± 0.2 days) and slowest in the 32.2(o)C and low food availability treatment (15.6 ± 0.5 days; i.e. 50% faster). Fish from the lower feeding regimens had a lower body condition and decreased survivorship to metamorphosis. Routine oxygen consumption rates were highest for fish raised at 32.2°C and fed every third day (162 ± 107 mg O(2)  kg(−1) h(−1)) and lowest for fish raised at 29.2°C and fed daily (122 ± 101 mg O(2) kg(−1) h(−1); i.e. 35% lower). The elevated routine oxygen consumption rate, and therefore greater energy use at higher temperatures, may leave less energy available for growth and development, resulting in the longer time to metamorphosis. Overall, these results suggest that larval fishes will be severely impacted by climate-change scenarios that predict both elevated temperatures and reduced food supply.