Cargando…

Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species

Non-invasive monitoring of wild felid reproductive states is important, given that many species reproduce poorly in captivity. Despite extensive work in faecal hormone analysis in felids, continued development of techniques is necessary, particularly with wild populations. In this study, our aims we...

Descripción completa

Detalles Bibliográficos
Autores principales: Terwissen, C. V., Mastromonaco, G. F., Murray, D. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732485/
https://www.ncbi.nlm.nih.gov/pubmed/27293665
http://dx.doi.org/10.1093/conphys/cou044
_version_ 1782412714202628096
author Terwissen, C. V.
Mastromonaco, G. F.
Murray, D. L.
author_facet Terwissen, C. V.
Mastromonaco, G. F.
Murray, D. L.
author_sort Terwissen, C. V.
collection PubMed
description Non-invasive monitoring of wild felid reproductive states is important, given that many species reproduce poorly in captivity. Despite extensive work in faecal hormone analysis in felids, continued development of techniques is necessary, particularly with wild populations. In this study, our aims were as follows: (i) biochemical validation of enzyme immunoassays for estrogen, testosterone and progesterone in Canada lynx and domestic cat hair extracts; (ii) assessment of the use of hair reproductive hormones to differentiate between reproductive states (intact, estrus, pregnant and spayed/neutered), using domestic cats as a model; and (iii) assessment of the use of hair reproductive hormones to differentiate between age and sex, accounting for potential regional variability in wild lynx populations. Analysis of hair hormone levels showed prospective value in detecting pregnancy states, with pregnant domestic cats having higher levels of progesterone than spayed females. However, intact and pregnant cats did not differ in progesterone levels. Yet, two female domestic cats had higher levels of hair progesterone following a 38-day oral progestin treatment, perhaps providing a preliminary pharmacological validation of the method. Estrogen and testosterone did not differ statistically according to reproductive states of domestic cats, although intact males had higher levels of hair testosterone than neutered males. When we applied these techniques to lynx fur, we determined that hormone levels were not sufficiently precise to differentiate age classes. Hair reproductive hormone ratios differed between sexes, with the estrogen-to-progesterone ratio demonstrating the highest accuracy in differentiating males from females. Hair hormone levels differed regionally for wild lynx, indicating that spatial variability should be a consideration in wildlife hormone studies spanning large spatial scales. We conclude that use of hair hormone analysis by enzyme immunoassay may hold promise for differentiating sex in felids, but the technique will require further refinement and validation before it can be applied broadly and reliably.
format Online
Article
Text
id pubmed-4732485
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-47324852016-06-10 Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species Terwissen, C. V. Mastromonaco, G. F. Murray, D. L. Conserv Physiol Toolbox Non-invasive monitoring of wild felid reproductive states is important, given that many species reproduce poorly in captivity. Despite extensive work in faecal hormone analysis in felids, continued development of techniques is necessary, particularly with wild populations. In this study, our aims were as follows: (i) biochemical validation of enzyme immunoassays for estrogen, testosterone and progesterone in Canada lynx and domestic cat hair extracts; (ii) assessment of the use of hair reproductive hormones to differentiate between reproductive states (intact, estrus, pregnant and spayed/neutered), using domestic cats as a model; and (iii) assessment of the use of hair reproductive hormones to differentiate between age and sex, accounting for potential regional variability in wild lynx populations. Analysis of hair hormone levels showed prospective value in detecting pregnancy states, with pregnant domestic cats having higher levels of progesterone than spayed females. However, intact and pregnant cats did not differ in progesterone levels. Yet, two female domestic cats had higher levels of hair progesterone following a 38-day oral progestin treatment, perhaps providing a preliminary pharmacological validation of the method. Estrogen and testosterone did not differ statistically according to reproductive states of domestic cats, although intact males had higher levels of hair testosterone than neutered males. When we applied these techniques to lynx fur, we determined that hormone levels were not sufficiently precise to differentiate age classes. Hair reproductive hormone ratios differed between sexes, with the estrogen-to-progesterone ratio demonstrating the highest accuracy in differentiating males from females. Hair hormone levels differed regionally for wild lynx, indicating that spatial variability should be a consideration in wildlife hormone studies spanning large spatial scales. We conclude that use of hair hormone analysis by enzyme immunoassay may hold promise for differentiating sex in felids, but the technique will require further refinement and validation before it can be applied broadly and reliably. Oxford University Press 2014-10-11 /pmc/articles/PMC4732485/ /pubmed/27293665 http://dx.doi.org/10.1093/conphys/cou044 Text en © The Author 2014. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Toolbox
Terwissen, C. V.
Mastromonaco, G. F.
Murray, D. L.
Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title_full Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title_fullStr Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title_full_unstemmed Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title_short Enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
title_sort enzyme immunoassays as a method for quantifying hair reproductive hormones in two felid species
topic Toolbox
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732485/
https://www.ncbi.nlm.nih.gov/pubmed/27293665
http://dx.doi.org/10.1093/conphys/cou044
work_keys_str_mv AT terwissencv enzymeimmunoassaysasamethodforquantifyinghairreproductivehormonesintwofelidspecies
AT mastromonacogf enzymeimmunoassaysasamethodforquantifyinghairreproductivehormonesintwofelidspecies
AT murraydl enzymeimmunoassaysasamethodforquantifyinghairreproductivehormonesintwofelidspecies