Cargando…
Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro
BACKGROUND: Although 5-HT(2A) serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (S...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732655/ https://www.ncbi.nlm.nih.gov/pubmed/26824242 http://dx.doi.org/10.1371/journal.pone.0147929 |
Sumario: | BACKGROUND: Although 5-HT(2A) serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT(2A) receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. METHODS AND FINDINGS: In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. CONCLUSION: Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of obese. |
---|