Cargando…
Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (∼3s). In this contribution...
Autores principales: | Zazo, Ruben, Lozano-Diez, Alicia, Gonzalez-Dominguez, Javier, T. Toledano, Doroteo, Gonzalez-Rodriguez, Joaquin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732772/ https://www.ncbi.nlm.nih.gov/pubmed/26824467 http://dx.doi.org/10.1371/journal.pone.0146917 |
Ejemplares similares
-
An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition
por: Lozano-Diez, Alicia, et al.
Publicado: (2017) -
Long short-term memory (LSTM) recurrent neural network for muscle activity detection
por: Ghislieri, Marco, et al.
Publicado: (2021) -
Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT
por: Toledano, Doroteo T., et al.
Publicado: (2018) -
Short-time speaker verification with different speaking style utterances
por: Mao, Hongwei, et al.
Publicado: (2020) -
LSTM-based recurrent neural network provides effective short term flu forecasting
por: Amendolara, Alfred B., et al.
Publicado: (2023)