Cargando…

Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection

Laryngeal palsy often occurs as a result of recurrent laryngeal or vagal nerve injury during oncological surgery of the head and neck, affecting quality of life and increasing economic burden. Reinnervation following recurrent laryngeal nerve (RLN) injury is difficult despite development of techniqu...

Descripción completa

Detalles Bibliográficos
Autores principales: WANG, BAOXIN, YUAN, JUNJIE, XU, JIAFENG, XIE, JIN, WANG, GUOLIANG, DONG, PIN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732864/
https://www.ncbi.nlm.nih.gov/pubmed/26677138
http://dx.doi.org/10.3892/mmr.2015.4684
Descripción
Sumario:Laryngeal palsy often occurs as a result of recurrent laryngeal or vagal nerve injury during oncological surgery of the head and neck, affecting quality of life and increasing economic burden. Reinnervation following recurrent laryngeal nerve (RLN) injury is difficult despite development of techniques, such as neural anastomosis, nerve grafting and creation of a laryngeal muscle pedicle. In the present study, due to the limited availability of human nerve tissue for research, a rat model was used to investigate neurotrophin expression and laryngeal muscle pathophysiology in RLN injury. Twenty-five male Sprague-Dawley rats underwent right RLN transection with the excision of a 5-mm segment. Vocal fold movements, vocalization, histology and immunostaining were evaluated at different time-points (3, 6, 10 and 16 weeks). Although vocalization was restored, movement of the vocal fold failed to return to normal levels following RLN injury. The expression of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor differed in the thyroarytenoid (TA) and posterior cricoarytenoid muscles. The number of axons did not increase to baseline levels over time. Furthermore, normal muscle function was unlikely with spontaneous reinnervation. During regeneration following RLN injury, differences in the expression levels of neurotrophic factors may have resulted in preferential reinnervation of the TA muscles. Data from the present study indicated that neurotrophic factors may be applied for restoring the function of the laryngeal nerve following recurrent injury.