Cargando…

ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA

The cytosolic antiviral innate immune sensor RIG-I distinguishes 5′ tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs...

Descripción completa

Detalles Bibliográficos
Autores principales: Lässig, Charlotte, Matheisl, Sarah, Sparrer, Konstantin MJ, de Oliveira Mann, Carina C, Moldt, Manuela, Patel, Jenish R, Goldeck, Marion, Hartmann, Gunther, García-Sastre, Adolfo, Hornung, Veit, Conzelmann, Karl-Klaus, Beckmann, Roland, Hopfner, Karl-Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733034/
https://www.ncbi.nlm.nih.gov/pubmed/26609812
http://dx.doi.org/10.7554/eLife.10859
_version_ 1782412784184590336
author Lässig, Charlotte
Matheisl, Sarah
Sparrer, Konstantin MJ
de Oliveira Mann, Carina C
Moldt, Manuela
Patel, Jenish R
Goldeck, Marion
Hartmann, Gunther
García-Sastre, Adolfo
Hornung, Veit
Conzelmann, Karl-Klaus
Beckmann, Roland
Hopfner, Karl-Peter
author_facet Lässig, Charlotte
Matheisl, Sarah
Sparrer, Konstantin MJ
de Oliveira Mann, Carina C
Moldt, Manuela
Patel, Jenish R
Goldeck, Marion
Hartmann, Gunther
García-Sastre, Adolfo
Hornung, Veit
Conzelmann, Karl-Klaus
Beckmann, Roland
Hopfner, Karl-Peter
author_sort Lässig, Charlotte
collection PubMed
description The cytosolic antiviral innate immune sensor RIG-I distinguishes 5′ tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding. DOI: http://dx.doi.org/10.7554/eLife.10859.001
format Online
Article
Text
id pubmed-4733034
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-47330342016-01-31 ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA Lässig, Charlotte Matheisl, Sarah Sparrer, Konstantin MJ de Oliveira Mann, Carina C Moldt, Manuela Patel, Jenish R Goldeck, Marion Hartmann, Gunther García-Sastre, Adolfo Hornung, Veit Conzelmann, Karl-Klaus Beckmann, Roland Hopfner, Karl-Peter eLife Cell Biology The cytosolic antiviral innate immune sensor RIG-I distinguishes 5′ tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding. DOI: http://dx.doi.org/10.7554/eLife.10859.001 eLife Sciences Publications, Ltd 2015-11-26 /pmc/articles/PMC4733034/ /pubmed/26609812 http://dx.doi.org/10.7554/eLife.10859 Text en © 2015, Lässig et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Lässig, Charlotte
Matheisl, Sarah
Sparrer, Konstantin MJ
de Oliveira Mann, Carina C
Moldt, Manuela
Patel, Jenish R
Goldeck, Marion
Hartmann, Gunther
García-Sastre, Adolfo
Hornung, Veit
Conzelmann, Karl-Klaus
Beckmann, Roland
Hopfner, Karl-Peter
ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title_full ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title_fullStr ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title_full_unstemmed ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title_short ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
title_sort atp hydrolysis by the viral rna sensor rig-i prevents unintentional recognition of self-rna
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733034/
https://www.ncbi.nlm.nih.gov/pubmed/26609812
http://dx.doi.org/10.7554/eLife.10859
work_keys_str_mv AT lassigcharlotte atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT matheislsarah atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT sparrerkonstantinmj atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT deoliveiramanncarinac atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT moldtmanuela atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT pateljenishr atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT goldeckmarion atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT hartmanngunther atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT garciasastreadolfo atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT hornungveit atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT conzelmannkarlklaus atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT beckmannroland atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna
AT hopfnerkarlpeter atphydrolysisbytheviralrnasensorrigipreventsunintentionalrecognitionofselfrna