Cargando…

A MS‐lesion pattern discrimination plot based on geostatistics

INTRODUCTION: A geostatistical approach to characterize MS‐lesion patterns based on their geometrical properties is presented. METHODS: A dataset of 259 binary MS‐lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability...

Descripción completa

Detalles Bibliográficos
Autores principales: Marschallinger, Robert, Schmidt, Paul, Hofmann, Peter, Zimmer, Claus, Atkinson, Peter M., Sellner, Johann, Trinka, Eugen, Mühlau, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733107/
https://www.ncbi.nlm.nih.gov/pubmed/26855827
http://dx.doi.org/10.1002/brb3.430
_version_ 1782412797014966272
author Marschallinger, Robert
Schmidt, Paul
Hofmann, Peter
Zimmer, Claus
Atkinson, Peter M.
Sellner, Johann
Trinka, Eugen
Mühlau, Mark
author_facet Marschallinger, Robert
Schmidt, Paul
Hofmann, Peter
Zimmer, Claus
Atkinson, Peter M.
Sellner, Johann
Trinka, Eugen
Mühlau, Mark
author_sort Marschallinger, Robert
collection PubMed
description INTRODUCTION: A geostatistical approach to characterize MS‐lesion patterns based on their geometrical properties is presented. METHODS: A dataset of 259 binary MS‐lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. RESULTS: Parameters Range and Sill correlate with MS‐lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS‐lesion patterns based on geometry: the so‐called MS‐Lesion Pattern Discrimination Plot. CONCLUSIONS: The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross‐sectional, follow‐up, and medication impact analysis.
format Online
Article
Text
id pubmed-4733107
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-47331072016-02-05 A MS‐lesion pattern discrimination plot based on geostatistics Marschallinger, Robert Schmidt, Paul Hofmann, Peter Zimmer, Claus Atkinson, Peter M. Sellner, Johann Trinka, Eugen Mühlau, Mark Brain Behav Original Research INTRODUCTION: A geostatistical approach to characterize MS‐lesion patterns based on their geometrical properties is presented. METHODS: A dataset of 259 binary MS‐lesion masks in MNI space was subjected to directional variography. A model function was fit to express the observed spatial variability in x, y, z directions by the geostatistical parameters Range and Sill. RESULTS: Parameters Range and Sill correlate with MS‐lesion pattern surface complexity and total lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern anisotropy, enables a consistent and clearly arranged presentation of MS‐lesion patterns based on geometry: the so‐called MS‐Lesion Pattern Discrimination Plot. CONCLUSIONS: The geostatistical approach and the graphical representation of results are considered efficient exploratory data analysis tools for cross‐sectional, follow‐up, and medication impact analysis. John Wiley and Sons Inc. 2016-01-30 /pmc/articles/PMC4733107/ /pubmed/26855827 http://dx.doi.org/10.1002/brb3.430 Text en © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Marschallinger, Robert
Schmidt, Paul
Hofmann, Peter
Zimmer, Claus
Atkinson, Peter M.
Sellner, Johann
Trinka, Eugen
Mühlau, Mark
A MS‐lesion pattern discrimination plot based on geostatistics
title A MS‐lesion pattern discrimination plot based on geostatistics
title_full A MS‐lesion pattern discrimination plot based on geostatistics
title_fullStr A MS‐lesion pattern discrimination plot based on geostatistics
title_full_unstemmed A MS‐lesion pattern discrimination plot based on geostatistics
title_short A MS‐lesion pattern discrimination plot based on geostatistics
title_sort ms‐lesion pattern discrimination plot based on geostatistics
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733107/
https://www.ncbi.nlm.nih.gov/pubmed/26855827
http://dx.doi.org/10.1002/brb3.430
work_keys_str_mv AT marschallingerrobert amslesionpatterndiscriminationplotbasedongeostatistics
AT schmidtpaul amslesionpatterndiscriminationplotbasedongeostatistics
AT hofmannpeter amslesionpatterndiscriminationplotbasedongeostatistics
AT zimmerclaus amslesionpatterndiscriminationplotbasedongeostatistics
AT atkinsonpeterm amslesionpatterndiscriminationplotbasedongeostatistics
AT sellnerjohann amslesionpatterndiscriminationplotbasedongeostatistics
AT trinkaeugen amslesionpatterndiscriminationplotbasedongeostatistics
AT muhlaumark amslesionpatterndiscriminationplotbasedongeostatistics
AT marschallingerrobert mslesionpatterndiscriminationplotbasedongeostatistics
AT schmidtpaul mslesionpatterndiscriminationplotbasedongeostatistics
AT hofmannpeter mslesionpatterndiscriminationplotbasedongeostatistics
AT zimmerclaus mslesionpatterndiscriminationplotbasedongeostatistics
AT atkinsonpeterm mslesionpatterndiscriminationplotbasedongeostatistics
AT sellnerjohann mslesionpatterndiscriminationplotbasedongeostatistics
AT trinkaeugen mslesionpatterndiscriminationplotbasedongeostatistics
AT muhlaumark mslesionpatterndiscriminationplotbasedongeostatistics