Cargando…
Antinociceptive Effect of Najanalgesin from Naja Naja Atra in a Neuropathic Pain Model via Inhibition of c-Jun NH2-terminal Kinase
BACKGROUND: Najanalgesin, a toxin isolated from the venom of Naja naja atra, has been shown to exert significant analgesic effects in a neuropathic pain model in rats. However, the molecular mechanism underlying this protective effect of najanalgesin is poorly understood. The present study sought to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733791/ https://www.ncbi.nlm.nih.gov/pubmed/26315082 http://dx.doi.org/10.4103/0366-6999.163397 |
Sumario: | BACKGROUND: Najanalgesin, a toxin isolated from the venom of Naja naja atra, has been shown to exert significant analgesic effects in a neuropathic pain model in rats. However, the molecular mechanism underlying this protective effect of najanalgesin is poorly understood. The present study sought to evaluate the intracellular signaling pathways that are involved in the antinociceptive effect of najanalgesin on neuropathic pain. METHODS: The antinociceptive properties of najanalgesin were tested in hind paw withdrawal thresholds in response to mechanical stimulation. We analyzed the participation of the mitogen-activated protein kinase p38, extracellular-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) by western blot analysis. This inhibition of JNK was confirmed by immunohistochemistry. RESULTS: The phosphorylation levels of JNK (as well as its downstream molecule c-Jun), p38, and ERK were significantly increased after injury. Najanalgesin only inhibited JNK and c-Jun phosphorylation but had no effect on either ERK or p38. This inhibition of JNK was confirmed by immunohistochemistry, which suggested that the antinociceptive effect of najanalgesin on spinal nerve ligation-induced neuropathic pain in rats is associated with JNK activation in the spinal cord. CONCLUSION: The antinociceptive effect of najanalgesin functions by inhibiting the JNK in a neuropathic pain model. |
---|