Cargando…
Maximum Entropy Estimation of Probability Distribution of Variables in Higher Dimensions from Lower Dimensional Data
A common statistical situation concerns inferring an unknown distribution Q(x) from a known distribution P(y), where X (dimension n), and Y (dimension m) have a known functional relationship. Most commonly, n ≤ m, and the task is relatively straightforward for well-defined functional relationships....
Autores principales: | Das, Jayajit, Mukherjee, Sayak, Hodge, Susan E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734403/ https://www.ncbi.nlm.nih.gov/pubmed/26843809 http://dx.doi.org/10.3390/e17074986 |
Ejemplares similares
-
The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution
por: Helu, Amal
Publicado: (2022) -
A Maximum-Entropy Method to Estimate Discrete Distributions from Samples Ensuring Nonzero Probabilities
por: Darscheid, Paul, et al.
Publicado: (2018) -
Distributed estimation and joint probabilities estimation by entropy model
por: Fassinut-Mombot, B, et al.
Publicado: (2001) -
On the Entropy and the Maximum Entropy Principle of Uncertain Variables
por: Liu, Yujun, et al.
Publicado: (2023) -
McSNAC: A software to approximate first-order signaling networks from mass cytometry data
por: Wethington, Darren, et al.
Publicado: (2023)