Cargando…
Evidence for the Nucleo-Apical Shuttling of a Beta-Catenin Like Plasmodium falciparum Armadillo Repeat Containing Protein
Eukaryotic Armadillo (ARM) repeat proteins are multifaceted with prominent roles in cell-cell adhesion, cytoskeletal regulation and intracellular signaling among many others. One such ARM repeat containing protein, ARM Repeats Only (ARO), has recently been demonstrated in both Toxoplasma (TgARO) and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734682/ https://www.ncbi.nlm.nih.gov/pubmed/26828945 http://dx.doi.org/10.1371/journal.pone.0148446 |
Sumario: | Eukaryotic Armadillo (ARM) repeat proteins are multifaceted with prominent roles in cell-cell adhesion, cytoskeletal regulation and intracellular signaling among many others. One such ARM repeat containing protein, ARM Repeats Only (ARO), has recently been demonstrated in both Toxoplasma (TgARO) and Plasmodium (PfARO) parasites to be targeted to the rhoptries during the late asexual stages. TgARO has been implicated to play an important role in rhoptry positioning i.e. directing the rhoptry towards the apical end of the parasite. Here, we report for the first time that PfARO exhibits a DNA binding property and a dynamic sub-cellular localization between the nucleus (early schizont) and rhoptry (late schizont) during the different stages of the asexual blood-stage life cycle. PfARO possesses a putative nuclear export signal (NES) and the nucleo-apical shuttling was sensitive to Leptomycin B (LMB) suggesting that the nuclear export was mediated by CRM1. Importantly, PfARO specifically bound an A-T rich DNA sequence of the P. falciparum Gyrase A (PfgyrA) gene, suggesting that the DNA binding specificity of PfARO is likely due to the AT-richness of the probe. This is a novel functional characteristic that has not been reported previously for any P. falciparum ARM containing protein and suggests a putative role for PfARO in gene regulation. This study describes for the first time a conserved P. falciparum ARM repeat protein with a high degree of functional versatility. |
---|