Cargando…

Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation

A conjugate Wishart prior is used to present a simple and rapid procedure for computing the analytic posterior (mode and uncertainty) of the precision matrix elements of a Gaussian distribution. An interpretation of covariance estimates in terms of eigenvalues is presented, along with a simple decis...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuismin, Markku, Sillanpää, Mikko J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734711/
https://www.ncbi.nlm.nih.gov/pubmed/26828427
http://dx.doi.org/10.1371/journal.pone.0148171
_version_ 1782412958068899840
author Kuismin, Markku
Sillanpää, Mikko J.
author_facet Kuismin, Markku
Sillanpää, Mikko J.
author_sort Kuismin, Markku
collection PubMed
description A conjugate Wishart prior is used to present a simple and rapid procedure for computing the analytic posterior (mode and uncertainty) of the precision matrix elements of a Gaussian distribution. An interpretation of covariance estimates in terms of eigenvalues is presented, along with a simple decision-rule step to improve the performance of the estimation of sparse precision matrices and associated graphs. In this, elements of the estimated precision matrix that are zero or near zero can be detected and shrunk to zero. Simulated data sets are used to compare posterior estimation with decision-rule with two other Wishart-based approaches and with graphical lasso. Furthermore, an empirical Bayes procedure is used to select prior hyperparameters in high dimensional cases with extension to sparsity.
format Online
Article
Text
id pubmed-4734711
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47347112016-02-04 Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation Kuismin, Markku Sillanpää, Mikko J. PLoS One Research Article A conjugate Wishart prior is used to present a simple and rapid procedure for computing the analytic posterior (mode and uncertainty) of the precision matrix elements of a Gaussian distribution. An interpretation of covariance estimates in terms of eigenvalues is presented, along with a simple decision-rule step to improve the performance of the estimation of sparse precision matrices and associated graphs. In this, elements of the estimated precision matrix that are zero or near zero can be detected and shrunk to zero. Simulated data sets are used to compare posterior estimation with decision-rule with two other Wishart-based approaches and with graphical lasso. Furthermore, an empirical Bayes procedure is used to select prior hyperparameters in high dimensional cases with extension to sparsity. Public Library of Science 2016-02-01 /pmc/articles/PMC4734711/ /pubmed/26828427 http://dx.doi.org/10.1371/journal.pone.0148171 Text en © 2016 Kuismin, Sillanpää http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kuismin, Markku
Sillanpää, Mikko J.
Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title_full Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title_fullStr Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title_full_unstemmed Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title_short Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation
title_sort use of wishart prior and simple extensions for sparse precision matrix estimation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734711/
https://www.ncbi.nlm.nih.gov/pubmed/26828427
http://dx.doi.org/10.1371/journal.pone.0148171
work_keys_str_mv AT kuisminmarkku useofwishartpriorandsimpleextensionsforsparseprecisionmatrixestimation
AT sillanpaamikkoj useofwishartpriorandsimpleextensionsforsparseprecisionmatrixestimation