Cargando…

AUI&GIV: Recommendation with Asymmetric User Influence and Global Importance Value

The user-based collaborative filtering (CF) algorithm is one of the most popular approaches for making recommendation. Despite its success, the traditional user-based CF algorithm suffers one serious problem that it only measures the influence between two users based on their symmetric similarities...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhi-Lin, Wang, Chang-Dong, Lai, Jian-Huang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734715/
https://www.ncbi.nlm.nih.gov/pubmed/26828803
http://dx.doi.org/10.1371/journal.pone.0147944
Descripción
Sumario:The user-based collaborative filtering (CF) algorithm is one of the most popular approaches for making recommendation. Despite its success, the traditional user-based CF algorithm suffers one serious problem that it only measures the influence between two users based on their symmetric similarities calculated by their consumption histories. It means that, for a pair of users, the influences on each other are the same, which however may not be true. Intuitively, an expert may have an impact on a novice user but a novice user may not affect an expert at all. Besides, each user may possess a global importance factor that affects his/her influence to the remaining users. To this end, in this paper, we propose an asymmetric user influence model to measure the directed influence between two users and adopt the PageRank algorithm to calculate the global importance value of each user. And then the directed influence values and the global importance values are integrated to deduce the final influence values between two users. Finally, we use the final influence values to improve the performance of the traditional user-based CF algorithm. Extensive experiments have been conducted, the results of which have confirmed that both the asymmetric user influence model and global importance value play key roles in improving recommendation accuracy, and hence the proposed method significantly outperforms the existing recommendation algorithms, in particular the user-based CF algorithm on the datasets of high rating density.