Cargando…
Corneal Power, Anterior Segment Length and Lens Power in 14-year-old Chinese Children: the Anyang Childhood Eye Study
To analyze the components of young Chinese eyes with special attention to differences in corneal power, anterior segment length and lens power. Cycloplegic refractions and ocular biometry with LENSTAR were used to calculate lens power with Bennett’s method. Mean refraction and mean values for the oc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735284/ https://www.ncbi.nlm.nih.gov/pubmed/26832228 http://dx.doi.org/10.1038/srep20243 |
Sumario: | To analyze the components of young Chinese eyes with special attention to differences in corneal power, anterior segment length and lens power. Cycloplegic refractions and ocular biometry with LENSTAR were used to calculate lens power with Bennett’s method. Mean refraction and mean values for the ocular components of five different refractive groups were studied with ANOVA and post-hoc Scheffé tests. There were 1889 subjects included with full data of refraction and ocular components. As expected, mean axial length was significantly longer in myopic eyes compared to emmetropes. Girls had steeper corneas, more powerful lenses and shorter eyes than boys. Lens power was lower in boys and also lower in myopic eyes. Lens thickness was the same for both genders but was lower in myopic eyes. Although cornea was steeper in myopic eyes in the whole sample, this was a gender effect (more girls in the myopic group) as this difference disappeared when the analysis was split by gender. Anterior segment length was longer in myopic eyes. In conclusion, myopic eyes have lower lens power and longer anterior segment length, that partially compensate their longer axial length. When analyzed by gender, the corneal power is not greater in low and moderate myopic eyes. |
---|