Cargando…
Memory Efficient PCA Methods for Large Group ICA
Principal component analysis (PCA) is widely used for data reduction in group independent component analysis (ICA) of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimension...
Autores principales: | Rachakonda, Srinivas, Silva, Rogers F., Liu, Jingyu, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735350/ https://www.ncbi.nlm.nih.gov/pubmed/26869874 http://dx.doi.org/10.3389/fnins.2016.00017 |
Ejemplares similares
-
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
por: Du, Yuhui, et al.
Publicado: (2017) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA
por: Gupta, Cota Navin, et al.
Publicado: (2015) -
Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices
por: Meier, Timothy B., et al.
Publicado: (2012)