Cargando…
Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection
The effect of pathogenic bacteria on a host and its symbiotic microbiota is vital and widespread in the biotic world. The soil-dwelling opportunistic bacterium Bacillus nematocida B16 uses a “Trojan horse” mechanism to kill Caenorhabditis elegans. The alterations in the intestinal microflora that oc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735852/ https://www.ncbi.nlm.nih.gov/pubmed/26830015 http://dx.doi.org/10.1038/srep20178 |
_version_ | 1782413159857913856 |
---|---|
author | Niu, Qiuhong Zhang, Lin Zhang, Keqin Huang, Xiaowei Hui, Fengli Kan, Yunchao Yao, Lunguang |
author_facet | Niu, Qiuhong Zhang, Lin Zhang, Keqin Huang, Xiaowei Hui, Fengli Kan, Yunchao Yao, Lunguang |
author_sort | Niu, Qiuhong |
collection | PubMed |
description | The effect of pathogenic bacteria on a host and its symbiotic microbiota is vital and widespread in the biotic world. The soil-dwelling opportunistic bacterium Bacillus nematocida B16 uses a “Trojan horse” mechanism to kill Caenorhabditis elegans. The alterations in the intestinal microflora that occur after B16 infection remain unknown. Here, we analyzed the intestinal bacteria presented in normal and infected worms. The gut microbial community experienced a complex change after B16 inoculation, as determined through marked differences in species diversity, structure, distribution and composition between uninfected and infected worms. Regardless of the worm’s origin (i.e., from soil or rotten fruits), the diversity of the intestinal microbiome decreased after infection. Firmicutes increased sharply, whereas Proteobacteria, Actinobacteria, Cyanobacteria and Acidobacteria decreased to different degrees. Fusobacteria was only present 12 h post-infection. After 24 h of infection, 1228 and 1109 bacterial species were identified in the uninfected and infected groups, respectively. The shared species reached 21.97%. The infected group had a greater number of Bacillus species but a smaller number of Pediococcus, Halomonas, Escherichia and Shewanella species (P < 0.01). Therefore, this study provides the first evaluation of the alterations caused by pathogenic bacteria on symbiotic microbiota using C. elegans as the model species. |
format | Online Article Text |
id | pubmed-4735852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47358522016-02-05 Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection Niu, Qiuhong Zhang, Lin Zhang, Keqin Huang, Xiaowei Hui, Fengli Kan, Yunchao Yao, Lunguang Sci Rep Article The effect of pathogenic bacteria on a host and its symbiotic microbiota is vital and widespread in the biotic world. The soil-dwelling opportunistic bacterium Bacillus nematocida B16 uses a “Trojan horse” mechanism to kill Caenorhabditis elegans. The alterations in the intestinal microflora that occur after B16 infection remain unknown. Here, we analyzed the intestinal bacteria presented in normal and infected worms. The gut microbial community experienced a complex change after B16 inoculation, as determined through marked differences in species diversity, structure, distribution and composition between uninfected and infected worms. Regardless of the worm’s origin (i.e., from soil or rotten fruits), the diversity of the intestinal microbiome decreased after infection. Firmicutes increased sharply, whereas Proteobacteria, Actinobacteria, Cyanobacteria and Acidobacteria decreased to different degrees. Fusobacteria was only present 12 h post-infection. After 24 h of infection, 1228 and 1109 bacterial species were identified in the uninfected and infected groups, respectively. The shared species reached 21.97%. The infected group had a greater number of Bacillus species but a smaller number of Pediococcus, Halomonas, Escherichia and Shewanella species (P < 0.01). Therefore, this study provides the first evaluation of the alterations caused by pathogenic bacteria on symbiotic microbiota using C. elegans as the model species. Nature Publishing Group 2016-02-02 /pmc/articles/PMC4735852/ /pubmed/26830015 http://dx.doi.org/10.1038/srep20178 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Niu, Qiuhong Zhang, Lin Zhang, Keqin Huang, Xiaowei Hui, Fengli Kan, Yunchao Yao, Lunguang Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title | Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title_full | Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title_fullStr | Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title_full_unstemmed | Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title_short | Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection |
title_sort | changes in intestinal microflora of caenorhabditis elegans following bacillus nematocida b16 infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735852/ https://www.ncbi.nlm.nih.gov/pubmed/26830015 http://dx.doi.org/10.1038/srep20178 |
work_keys_str_mv | AT niuqiuhong changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT zhanglin changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT zhangkeqin changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT huangxiaowei changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT huifengli changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT kanyunchao changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection AT yaolunguang changesinintestinalmicrofloraofcaenorhabditiselegansfollowingbacillusnematocidab16infection |