Cargando…
Crosstalk between miRNAs and their regulated genes network in stroke
In recent years, more and more studies focus on the roles of genes or miRNAs in stroke. However, the molecular mechanism connecting miRNAs and their targetgenes remains unclear. The aim of this study was to determine the differential regulation and correlations between miRNAs and their targetgenes i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735861/ https://www.ncbi.nlm.nih.gov/pubmed/26830013 http://dx.doi.org/10.1038/srep20429 |
Sumario: | In recent years, more and more studies focus on the roles of genes or miRNAs in stroke. However, the molecular mechanism connecting miRNAs and their targetgenes remains unclear. The aim of this study was to determine the differential regulation and correlations between miRNAs and their targetgenes in human stroke. Stroke-related miRNAs were obtained from the Human MicroRNA Disease Database (HMDD) and their targetgenes were generated from three independent sources. Kappa score was used to create the network and the functional modules. A total of 11 stroke-related miRNAs were identified from the HMDD and 441 overlapping targetgenes were extracted from the three databases. By network construction and GO analysis, 13 functional modules, 186 biological processes, and 21 pathways were found in the network, of which functional module 8 was the largest module, cellular-related process and phosphate-related process were the most important biological processes, and MAPK signaling pathway was the most significant pathway. In our study, all miRNAs regulate the stroke modular network by their targetgenes. After the validation of miRNAs, we found that miR-605 and miR-181d were highly expressed in the blood of stroke patients which never reported before may supply novel target for treatment. |
---|