Cargando…
EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme
Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials...
Autores principales: | Ji, Hongfei, Li, Jie, Lu, Rongrong, Gu, Rong, Cao, Lei, Gong, Xiaoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735917/ https://www.ncbi.nlm.nih.gov/pubmed/26880873 http://dx.doi.org/10.1155/2016/1732836 |
Ejemplares similares
-
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022) -
Double-Criteria Active Learning for Multiclass Brain-Computer Interfaces
por: She, Qingshan, et al.
Publicado: (2020) -
Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer’s Disease and Mild Cognitive Impairment
por: Ruiz-Gómez, Saúl J., et al.
Publicado: (2018) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018)