Cargando…
Imbalanced Learning Based on Logistic Discrimination
In recent years, imbalanced learning problem has attracted more and more attentions from both academia and industry, and the problem is concerned with the performance of learning algorithms in the presence of data with severe class distribution skews. In this paper, we apply the well-known statistic...
Autores principales: | Guo, Huaping, Zhi, Weimei, Liu, Hongbing, Xu, Mingliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736373/ https://www.ncbi.nlm.nih.gov/pubmed/26880877 http://dx.doi.org/10.1155/2016/5423204 |
Ejemplares similares
-
Embedding Undersampling Rotation Forest for Imbalanced Problem
por: Guo, Huaping, et al.
Publicado: (2018) -
Imbalanced Seismic Event Discrimination Using Supervised Machine Learning
por: Ahn, Hyeongki, et al.
Publicado: (2022) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment
por: Lipshutz, David, et al.
Publicado: (2023) -
Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
por: Nadeem, Khurram, et al.
Publicado: (2023)