Cargando…
Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2′‐5′ Linkages
Information‐bearing nucleic acids display universal 3′‐5′ linkages, but regioisomeric 2′‐5′ linkages occur sporadically in non‐enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site‐specific 2′‐5′ linkages by an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY‐VCH Verlag
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736440/ https://www.ncbi.nlm.nih.gov/pubmed/26527364 http://dx.doi.org/10.1002/anie.201508678 |
Sumario: | Information‐bearing nucleic acids display universal 3′‐5′ linkages, but regioisomeric 2′‐5′ linkages occur sporadically in non‐enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site‐specific 2′‐5′ linkages by an engineered polymerase using 3′‐deoxy‐ or 3′‐O‐methyl‐NTPs as substrates. We also report the reverse transcription of the resulting modified nucleic acids back to 3′‐5′ linked DNA with good fidelity. This enables a fast and simple method for “structural mutagenesis” by the position‐selective incorporation of 2′‐5′ linkages, whereby nucleic acid structure and function may be probed through local distortion by regioisomeric linkages while maintaining the wild‐type base sequence as we demonstrate for the 10–23 RNA endonuclease DNAzyme. |
---|