Cargando…

Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments

Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xia, Hu, Xiaopeng, Zhang, Chao, Wang, Haibao, Zhu, Xiaoqun, Xu, Liyan, Sun, Zhongwu, Yu, Yongqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736471/
https://www.ncbi.nlm.nih.gov/pubmed/26869922
http://dx.doi.org/10.3389/fnagi.2016.00014
Descripción
Sumario:Abnormal structures in the cortical and subcortical regions have been identified in subcortical vascular cognition impairment (SVCI). However, little is known about the functional alterations in SVCI, and no study refers to the functional connectivity in the prefrontal and subcortical regions in this context. The medial prefrontal cortex (MPFC) is an important region of the executive network and default mode network, and the subcortical thalamus plays vital roles in mediating or modulating these two networks. To investigate both thalamus- and MPFC-related functional connectivity as well as its relationship with cognition in SVCI, 32 SVCI patients and 23 control individuals were administered neuropsychological assessments. They also underwent structural and functional magnetic resonance imaging scans. Voxel-based morphometry and functional connectivity analysis were performed to detect gray matter (GM) atrophy and to characterize the functional alterations in the thalamus and the MPFC. For structural data, we observed that GM atrophy was distributed in both cortical regions and subcortical areas. For functional data, we observed that the thalamus functional connectivity in SVCI was significantly decreased in several cortical regions [i.e., the orbitofrontal lobe (OFL)], which are mainly involved in executive function and memory function. However, connectivity was increased in several frontal regions (i.e., the inferior frontal gyrus), which may be induced by the compensatory recruitment of the decreased functional connectivity. The MPFC functional connectivity was also decreased in executive- and memory-related regions (i.e., the anterior cingulate cortex) along with a motor region (i.e., the supplementary motor area). In addition, the cognitive performance was closely correlated with functional connectivity between the left thalamus and the left OFL in SVCI. The present study, thus, provides evidence for an association between structural and functional alterations, and sheds light on the underlying neural mechanisms of executive dysfunction in SVCI.