Cargando…
Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans
BACKGROUND: Success in genome-wide association studies and marker-assisted selection depends on good phenotypic and genotypic data. The more complete this data is, the more powerful will be the results of analysis. Nevertheless, there are next-generation technologies that seek to provide genotypic i...
Autores principales: | Xavier, A., Muir, William M., Rainey, Katy M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736474/ https://www.ncbi.nlm.nih.gov/pubmed/26830693 http://dx.doi.org/10.1186/s12859-016-0899-7 |
Ejemplares similares
-
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
por: Xavier, Alencar, et al.
Publicado: (2016) -
Phenotypic Variation and Genetic Architecture for Photosynthesis and Water Use Efficiency in Soybean (Glycine max L. Merr)
por: Lopez, Miguel Angel, et al.
Publicado: (2019) -
I-Impute: a self-consistent method to impute single cell RNA sequencing data
por: Feng, Xikang, et al.
Publicado: (2020) -
Sequence imputation from low density single nucleotide polymorphism panel in a black poplar breeding population
por: Pégard, Marie, et al.
Publicado: (2019) -
Evaluation of single-nucleotide polymorphism imputation using random forests
por: Schwarz, Daniel F, et al.
Publicado: (2009)