Cargando…

Analysis of the factors influencing healthcare professionals’ adoption of mobile electronic medical record (EMR) using the unified theory of acceptance and use of technology (UTAUT) in a tertiary hospital

BACKGROUND: Although the factors that affect the end-user’s intention to use a new system and technology have been researched, the previous studies have been theoretical and do not verify the factors that affected the adoption of a new system. Thus, this study aimed to confirm the factors that influ...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seok, Lee, Kee-Hyuck, Hwang, Hee, Yoo, Sooyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736616/
https://www.ncbi.nlm.nih.gov/pubmed/26831123
http://dx.doi.org/10.1186/s12911-016-0249-8
Descripción
Sumario:BACKGROUND: Although the factors that affect the end-user’s intention to use a new system and technology have been researched, the previous studies have been theoretical and do not verify the factors that affected the adoption of a new system. Thus, this study aimed to confirm the factors that influence users’ intentions to utilize a mobile electronic health records (EMR) system using both a questionnaire survey and a log file analysis that represented the real use of the system. METHODS: After observing the operation of a mobile EMR system in a tertiary university hospital for seven months, we performed an offline survey regarding the user acceptance of the system based on the Unified Theory of Acceptance and Use of Technology (UTAUT) and the Technology Acceptance Model (TAM). We surveyed 942 healthcare professionals over two weeks and performed a structural equation modeling (SEM) analysis to identify the intention to use the system among the participants. Next, we compared the results of the SEM analysis with the results of the analyses of the actual log files for two years to identify further insights into the factors that affected the intention of use. For these analyses, we used SAS 9.0 and AMOS 21. RESULTS: Of the 942 surveyed end-users, 48.3 % (23.2 % doctors and 68.3 % nurses) responded. After eliminating six subjects who completed the survey insincerely, we conducted the SEM analyses on the data from 449 subjects (65 doctors and 385 nurses). The newly suggested model satisfied the standards of model fitness, and the intention to use it was especially high due to the influences of Performance Expectancy on Attitude and Attitude. Based on the actual usage log analyses, both the doctors and nurses used the menus to view the inpatient lists, alerts, and patients’ clinical data with high frequency. Specifically, the doctors frequently retrieved laboratory results, and the nurses frequently retrieved nursing notes and used the menu to assume the responsibilities of nursing work. CONCLUSION: In this study, the end-users’ intentions to use the mobile EMR system were particularly influenced by Performance Expectancy and Attitude. In reality, the usage log revealed high-frequency use of the functions to improve the continuity of care and work efficiency. These results indicate the influence of the factor of performance expectancy on the intention to use the mobile EMR system. Consequently, we suggest that when determining the implementation of mobile EMR systems, the functions that are related to workflow with ability to increase performance should be considered first.