Cargando…

Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy

The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Grimm, Jonathan B., Klein, Teresa, Kopek, Benjamin G., Shtengel, Gleb, Hess, Harald F., Sauer, Markus, Lavis, Luke D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736676/
https://www.ncbi.nlm.nih.gov/pubmed/26661345
http://dx.doi.org/10.1002/anie.201509649
_version_ 1782413330580766720
author Grimm, Jonathan B.
Klein, Teresa
Kopek, Benjamin G.
Shtengel, Gleb
Hess, Harald F.
Sauer, Markus
Lavis, Luke D.
author_facet Grimm, Jonathan B.
Klein, Teresa
Kopek, Benjamin G.
Shtengel, Gleb
Hess, Harald F.
Sauer, Markus
Lavis, Luke D.
author_sort Grimm, Jonathan B.
collection PubMed
description The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules.
format Online
Article
Text
id pubmed-4736676
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-47366762016-07-08 Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy Grimm, Jonathan B. Klein, Teresa Kopek, Benjamin G. Shtengel, Gleb Hess, Harald F. Sauer, Markus Lavis, Luke D. Angew Chem Int Ed Engl Communications The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules. John Wiley and Sons Inc. 2015-12-11 2016-01-26 /pmc/articles/PMC4736676/ /pubmed/26661345 http://dx.doi.org/10.1002/anie.201509649 Text en © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Communications
Grimm, Jonathan B.
Klein, Teresa
Kopek, Benjamin G.
Shtengel, Gleb
Hess, Harald F.
Sauer, Markus
Lavis, Luke D.
Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title_full Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title_fullStr Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title_full_unstemmed Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title_short Synthesis of a Far‐Red Photoactivatable Silicon‐Containing Rhodamine for Super‐Resolution Microscopy
title_sort synthesis of a far‐red photoactivatable silicon‐containing rhodamine for super‐resolution microscopy
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736676/
https://www.ncbi.nlm.nih.gov/pubmed/26661345
http://dx.doi.org/10.1002/anie.201509649
work_keys_str_mv AT grimmjonathanb synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT kleinteresa synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT kopekbenjaming synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT shtengelgleb synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT hessharaldf synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT sauermarkus synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy
AT lavisluked synthesisofafarredphotoactivatablesiliconcontainingrhodamineforsuperresolutionmicroscopy