Cargando…

Three-Dimensional Analysis of the Contact Pattern between the Cortical Bone and Femoral Prosthesis after Cementless Total Hip Arthroplasty

The cementless stem Excia (B. Braun, Melsungen, Germany) implant has a rectangular cross-sectional shape with back-and-forth flanges and a plasma-sprayed, dicalcium phosphate dihydrate coating from the middle to proximal portion to increase initial fixation and early bone formation. Here, the confor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wada, Hiroshi, Mishima, Hajime, Sugaya, Hisashi, Nishino, Tomofumi, Yamazaki, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736951/
https://www.ncbi.nlm.nih.gov/pubmed/26881087
http://dx.doi.org/10.1155/2016/8052380
Descripción
Sumario:The cementless stem Excia (B. Braun, Melsungen, Germany) implant has a rectangular cross-sectional shape with back-and-forth flanges and a plasma-sprayed, dicalcium phosphate dihydrate coating from the middle to proximal portion to increase initial fixation and early bone formation. Here, the conformity of the Excia stem to the femoral canal morphology was three-dimensionally assessed using computed tomography. Forty-three patients (45 hips) were examined after primary total hip arthroplasty with a mean follow-up of 27 ± 3 months (range: 24–36 months). Spot welds occurred at zone 2 in 16 hips and at zone 6 in 24 hips, with 83% (20/24 hips) of those occurring within 3 months after surgery. First- (n = 12 hips), second- (n = 32), and third- (n = 1) degree stress shielding were observed. The stem was typically in contact with the cortical bone in the anterolateral mid-portion (100%) and posteromedial distal portions (85%). Stress shielding did not progress, even in cases where the stems were in contact with the distal portions. The anterior flange was in contact with the bone in all cases. The stability of the mid-lateral portion with the dicalcium phosphate dihydrate coating and the anterior flange may have inhibited the progression of stress shielding beyond the second degree.