Cargando…
Cross-platform normalization of microarray and RNA-seq data for machine learning applications
Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data ca...
Autores principales: | Thompson, Jeffrey A., Tan, Jie, Greene, Casey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736986/ https://www.ncbi.nlm.nih.gov/pubmed/26844019 http://dx.doi.org/10.7717/peerj.1621 |
Ejemplares similares
-
Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously
por: Foltz, Steven M., et al.
Publicado: (2023) -
Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers?
por: Johnson, Nathan T., et al.
Publicado: (2018) -
cdev: a ground-truth based measure to evaluate RNA-seq normalization performance
por: Tran, Diem-Trang, et al.
Publicado: (2021) -
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020) -
clrDV: a differential variability test for RNA-Seq data based on the skew-normal distribution
por: Li, Hongxiang, et al.
Publicado: (2023)