Cargando…
Competitive SWIFT cluster templates enhance detection of aging changes
Clustering‐based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the impor...
Autores principales: | Rebhahn, Jonathan A., Roumanes, David R., Qi, Yilin, Khan, Atif, Thakar, Juilee, Rosenberg, Alex, Lee, F. Eun‐Hyung, Quataert, Sally A., Sharma, Gaurav, Mosmann, Tim R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737406/ https://www.ncbi.nlm.nih.gov/pubmed/26441030 http://dx.doi.org/10.1002/cyto.a.22740 |
Ejemplares similares
-
Mapping cell populations in flow cytometry data for cross‐sample comparison using the Friedman–Rafsky test statistic as a distance measure
por: Hsiao, Chiaowen, et al.
Publicado: (2015) -
SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects
por: Rebhahn, Jonathan A., et al.
Publicado: (2020) -
A 3D ex vivo mandible slice system for longitudinal culturing of transplanted dental pulp progenitor cells
por: Colombo, John S., et al.
Publicado: (2015) -
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design
por: Naim, Iftekhar, et al.
Publicado: (2014) -
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation
por: Mosmann, Tim R, et al.
Publicado: (2014)