Cargando…

Nanoconnectomic upper bound on the variability of synaptic plasticity

Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartol, Thomas M, Bromer, Cailey, Kinney, Justin, Chirillo, Michael A, Bourne, Jennifer N, Harris, Kristen M, Sejnowski, Terrence J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737657/
https://www.ncbi.nlm.nih.gov/pubmed/26618907
http://dx.doi.org/10.7554/eLife.10778
Descripción
Sumario:Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes. DOI: http://dx.doi.org/10.7554/eLife.10778.001