Cargando…
Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo
Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted deliver...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737718/ https://www.ncbi.nlm.nih.gov/pubmed/26909106 http://dx.doi.org/10.7150/thno.13728 |
_version_ | 1782413509358780416 |
---|---|
author | Zheng, Bo von See, Marc P. Yu, Elaine Gunel, Beliz Lu, Kuan Vazin, Tandis Schaffer, David V. Goodwill, Patrick W. Conolly, Steven M. |
author_facet | Zheng, Bo von See, Marc P. Yu, Elaine Gunel, Beliz Lu, Kuan Vazin, Tandis Schaffer, David V. Goodwill, Patrick W. Conolly, Steven M. |
author_sort | Zheng, Bo |
collection | PubMed |
description | Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R(2) = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents. |
format | Online Article Text |
id | pubmed-4737718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-47377182016-02-23 Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo Zheng, Bo von See, Marc P. Yu, Elaine Gunel, Beliz Lu, Kuan Vazin, Tandis Schaffer, David V. Goodwill, Patrick W. Conolly, Steven M. Theranostics Research Paper Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R(2) = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents. Ivyspring International Publisher 2016-01-01 /pmc/articles/PMC4737718/ /pubmed/26909106 http://dx.doi.org/10.7150/thno.13728 Text en © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. |
spellingShingle | Research Paper Zheng, Bo von See, Marc P. Yu, Elaine Gunel, Beliz Lu, Kuan Vazin, Tandis Schaffer, David V. Goodwill, Patrick W. Conolly, Steven M. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title | Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title_full | Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title_fullStr | Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title_full_unstemmed | Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title_short | Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo |
title_sort | quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737718/ https://www.ncbi.nlm.nih.gov/pubmed/26909106 http://dx.doi.org/10.7150/thno.13728 |
work_keys_str_mv | AT zhengbo quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT vonseemarcp quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT yuelaine quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT gunelbeliz quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT lukuan quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT vazintandis quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT schafferdavidv quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT goodwillpatrickw quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo AT conollystevenm quantitativemagneticparticleimagingmonitorsthetransplantationbiodistributionandclearanceofstemcellsinvivo |