Cargando…
Nanoelectronic primary thermometry below 4 mK
Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. H...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737845/ https://www.ncbi.nlm.nih.gov/pubmed/26816217 http://dx.doi.org/10.1038/ncomms10455 |
_version_ | 1782413533067083776 |
---|---|
author | Bradley, D. I. George, R. E. Gunnarsson, D. Haley, R. P. Heikkinen, H. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sarsby, M. |
author_facet | Bradley, D. I. George, R. E. Gunnarsson, D. Haley, R. P. Heikkinen, H. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sarsby, M. |
author_sort | Bradley, D. I. |
collection | PubMed |
description | Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. |
format | Online Article Text |
id | pubmed-4737845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47378452016-03-04 Nanoelectronic primary thermometry below 4 mK Bradley, D. I. George, R. E. Gunnarsson, D. Haley, R. P. Heikkinen, H. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sarsby, M. Nat Commun Article Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. Nature Publishing Group 2016-01-27 /pmc/articles/PMC4737845/ /pubmed/26816217 http://dx.doi.org/10.1038/ncomms10455 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Bradley, D. I. George, R. E. Gunnarsson, D. Haley, R. P. Heikkinen, H. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sarsby, M. Nanoelectronic primary thermometry below 4 mK |
title | Nanoelectronic primary thermometry below 4 mK |
title_full | Nanoelectronic primary thermometry below 4 mK |
title_fullStr | Nanoelectronic primary thermometry below 4 mK |
title_full_unstemmed | Nanoelectronic primary thermometry below 4 mK |
title_short | Nanoelectronic primary thermometry below 4 mK |
title_sort | nanoelectronic primary thermometry below 4 mk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737845/ https://www.ncbi.nlm.nih.gov/pubmed/26816217 http://dx.doi.org/10.1038/ncomms10455 |
work_keys_str_mv | AT bradleydi nanoelectronicprimarythermometrybelow4mk AT georgere nanoelectronicprimarythermometrybelow4mk AT gunnarssond nanoelectronicprimarythermometrybelow4mk AT haleyrp nanoelectronicprimarythermometrybelow4mk AT heikkinenh nanoelectronicprimarythermometrybelow4mk AT pashkinyua nanoelectronicprimarythermometrybelow4mk AT penttilaj nanoelectronicprimarythermometrybelow4mk AT prancejr nanoelectronicprimarythermometrybelow4mk AT prunnilam nanoelectronicprimarythermometrybelow4mk AT roschierl nanoelectronicprimarythermometrybelow4mk AT sarsbym nanoelectronicprimarythermometrybelow4mk |