Cargando…

Nanoelectronic primary thermometry below 4 mK

Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Bradley, D. I., George, R. E., Gunnarsson, D., Haley, R. P., Heikkinen, H., Pashkin, Yu. A., Penttilä, J., Prance, J. R., Prunnila, M., Roschier, L., Sarsby, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737845/
https://www.ncbi.nlm.nih.gov/pubmed/26816217
http://dx.doi.org/10.1038/ncomms10455
_version_ 1782413533067083776
author Bradley, D. I.
George, R. E.
Gunnarsson, D.
Haley, R. P.
Heikkinen, H.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
Sarsby, M.
author_facet Bradley, D. I.
George, R. E.
Gunnarsson, D.
Haley, R. P.
Heikkinen, H.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
Sarsby, M.
author_sort Bradley, D. I.
collection PubMed
description Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.
format Online
Article
Text
id pubmed-4737845
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47378452016-03-04 Nanoelectronic primary thermometry below 4 mK Bradley, D. I. George, R. E. Gunnarsson, D. Haley, R. P. Heikkinen, H. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sarsby, M. Nat Commun Article Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron–phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. Nature Publishing Group 2016-01-27 /pmc/articles/PMC4737845/ /pubmed/26816217 http://dx.doi.org/10.1038/ncomms10455 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Bradley, D. I.
George, R. E.
Gunnarsson, D.
Haley, R. P.
Heikkinen, H.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
Sarsby, M.
Nanoelectronic primary thermometry below 4 mK
title Nanoelectronic primary thermometry below 4 mK
title_full Nanoelectronic primary thermometry below 4 mK
title_fullStr Nanoelectronic primary thermometry below 4 mK
title_full_unstemmed Nanoelectronic primary thermometry below 4 mK
title_short Nanoelectronic primary thermometry below 4 mK
title_sort nanoelectronic primary thermometry below 4 mk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737845/
https://www.ncbi.nlm.nih.gov/pubmed/26816217
http://dx.doi.org/10.1038/ncomms10455
work_keys_str_mv AT bradleydi nanoelectronicprimarythermometrybelow4mk
AT georgere nanoelectronicprimarythermometrybelow4mk
AT gunnarssond nanoelectronicprimarythermometrybelow4mk
AT haleyrp nanoelectronicprimarythermometrybelow4mk
AT heikkinenh nanoelectronicprimarythermometrybelow4mk
AT pashkinyua nanoelectronicprimarythermometrybelow4mk
AT penttilaj nanoelectronicprimarythermometrybelow4mk
AT prancejr nanoelectronicprimarythermometrybelow4mk
AT prunnilam nanoelectronicprimarythermometrybelow4mk
AT roschierl nanoelectronicprimarythermometrybelow4mk
AT sarsbym nanoelectronicprimarythermometrybelow4mk