Cargando…

Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans

We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer...

Descripción completa

Detalles Bibliográficos
Autores principales: Dwivedi, Deepak, Singh, Vinod
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738039/
https://www.ncbi.nlm.nih.gov/pubmed/26870681
http://dx.doi.org/10.1016/j.jtcme.2014.11.025
Descripción
Sumario:We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A(492) < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD(492) < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans.