Cargando…
Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems
The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738245/ https://www.ncbi.nlm.nih.gov/pubmed/26837286 http://dx.doi.org/10.1038/srep19932 |
_version_ | 1782413572422238208 |
---|---|
author | Martinez-Pedrero, Fernando Tierno, Pietro Johansen, Tom H. Straube, Arthur V. |
author_facet | Martinez-Pedrero, Fernando Tierno, Pietro Johansen, Tom H. Straube, Arthur V. |
author_sort | Martinez-Pedrero, Fernando |
collection | PubMed |
description | The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications. |
format | Online Article Text |
id | pubmed-4738245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47382452016-02-09 Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems Martinez-Pedrero, Fernando Tierno, Pietro Johansen, Tom H. Straube, Arthur V. Sci Rep Article The emergence of wave fronts in dissipative driven systems is a fascinating phenomenon which can be found in a broad range of physical and biological disciplines. Here we report the direct experimental observation of discrete fronts propagating along chains of paramagnetic colloidal particles, the latter propelled above a traveling wave potential generated by a structured magnetic substrate. We develop a rigorously reduced theoretical framework and describe the dynamics of the system in terms of a generalized one-dimensional dissipative Frenkel-Kontorova model. The front dynamics is explored in a wide range of field parameters close to and far from depinning, where the discrete and continuum limits apply. We show how symmetry breaking and finite size of chains are used to control the direction of front propagation, a universal feature relevant to different systems and important for real applications. Nature Publishing Group 2016-02-03 /pmc/articles/PMC4738245/ /pubmed/26837286 http://dx.doi.org/10.1038/srep19932 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Martinez-Pedrero, Fernando Tierno, Pietro Johansen, Tom H. Straube, Arthur V. Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title | Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title_full | Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title_fullStr | Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title_full_unstemmed | Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title_short | Regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
title_sort | regulating wave front dynamics from the strongly discrete to the continuum limit in magnetically driven colloidal systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738245/ https://www.ncbi.nlm.nih.gov/pubmed/26837286 http://dx.doi.org/10.1038/srep19932 |
work_keys_str_mv | AT martinezpedrerofernando regulatingwavefrontdynamicsfromthestronglydiscretetothecontinuumlimitinmagneticallydrivencolloidalsystems AT tiernopietro regulatingwavefrontdynamicsfromthestronglydiscretetothecontinuumlimitinmagneticallydrivencolloidalsystems AT johansentomh regulatingwavefrontdynamicsfromthestronglydiscretetothecontinuumlimitinmagneticallydrivencolloidalsystems AT straubearthurv regulatingwavefrontdynamicsfromthestronglydiscretetothecontinuumlimitinmagneticallydrivencolloidalsystems |