Cargando…
How Many Is Enough? Effect of Sample Size in Inter-Subject Correlation Analysis of fMRI
Inter-subject correlation (ISC) is a widely used method for analyzing functional magnetic resonance imaging (fMRI) data acquired during naturalistic stimuli. A challenge in ISC analysis is to define the required sample size in the way that the results are reliable. We studied the effect of the sampl...
Autores principales: | Pajula, Juha, Tohka, Jussi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738700/ https://www.ncbi.nlm.nih.gov/pubmed/26884746 http://dx.doi.org/10.1155/2016/2094601 |
Ejemplares similares
-
A versatile software package for inter-subject correlation based analyses of fMRI
por: Kauppi, Jukka-Pekka, et al.
Publicado: (2014) -
Inter-Subject Correlation in fMRI: Method Validation against Stimulus-Model Based Analysis
por: Pajula, Juha, et al.
Publicado: (2012) -
Graph-Based Inter-Subject Pattern Analysis of fMRI Data
por: Takerkart, Sylvain, et al.
Publicado: (2014) -
How many landmarks are enough to characterize shape and size variation?
por: Watanabe, Akinobu
Publicado: (2018) -
Visualising inter-subject variability in fMRI using threshold-weighted overlap maps
por: Seghier, Mohamed L., et al.
Publicado: (2016)