Cargando…
Learning-Based Visual Saliency Model for Detecting Diabetic Macular Edema in Retinal Image
This paper brings forth a learning-based visual saliency model method for detecting diagnostic diabetic macular edema (DME) regions of interest (RoIs) in retinal image. The method introduces the cognitive process of visual selection of relevant regions that arises during an ophthalmologist's im...
Autores principales: | Zou, Xiaochun, Zhao, Xinbo, Yang, Yongjia, Li, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738732/ https://www.ncbi.nlm.nih.gov/pubmed/26884750 http://dx.doi.org/10.1155/2016/7496735 |
Ejemplares similares
-
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network
por: Li, Na, et al.
Publicado: (2016) -
Infrared retinal images for flashless detection of macular edema
por: Ajaz, Aqsa, et al.
Publicado: (2020) -
Advances in retinal imaging for diabetic retinopathy and diabetic macular edema
por: Tan, Colin Siang Hui, et al.
Publicado: (2016) -
Learning to Model Task-Oriented Attention
por: Zou, Xiaochun, et al.
Publicado: (2016) -
Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning
por: Ren, Fulong, et al.
Publicado: (2018)