Cargando…
Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan
Perineuronal nets (PNNs) are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs). The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sul...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738747/ https://www.ncbi.nlm.nih.gov/pubmed/27057358 http://dx.doi.org/10.1155/2016/1305801 |
_version_ | 1782413656272666624 |
---|---|
author | Miyata, Shinji Kitagawa, Hiroshi |
author_facet | Miyata, Shinji Kitagawa, Hiroshi |
author_sort | Miyata, Shinji |
collection | PubMed |
description | Perineuronal nets (PNNs) are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs). The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS) chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1), which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity. |
format | Online Article Text |
id | pubmed-4738747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47387472016-04-07 Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan Miyata, Shinji Kitagawa, Hiroshi Neural Plast Research Article Perineuronal nets (PNNs) are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs). The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS) chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1), which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity. Hindawi Publishing Corporation 2016 2016-01-14 /pmc/articles/PMC4738747/ /pubmed/27057358 http://dx.doi.org/10.1155/2016/1305801 Text en Copyright © 2016 S. Miyata and H. Kitagawa. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Miyata, Shinji Kitagawa, Hiroshi Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title | Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title_full | Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title_fullStr | Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title_full_unstemmed | Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title_short | Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan |
title_sort | chondroitin 6-sulfation regulates perineuronal net formation by controlling the stability of aggrecan |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738747/ https://www.ncbi.nlm.nih.gov/pubmed/27057358 http://dx.doi.org/10.1155/2016/1305801 |
work_keys_str_mv | AT miyatashinji chondroitin6sulfationregulatesperineuronalnetformationbycontrollingthestabilityofaggrecan AT kitagawahiroshi chondroitin6sulfationregulatesperineuronalnetformationbycontrollingthestabilityofaggrecan |