Cargando…
De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739524/ https://www.ncbi.nlm.nih.gov/pubmed/26840746 http://dx.doi.org/10.1371/journal.pone.0148453 |
_version_ | 1782413764071522304 |
---|---|
author | Chandra, Saket Singh, Dharmendra Pathak, Jyoti Kumari, Supriya Kumar, Manish Poddar, Raju Balyan, Harindra Singh Gupta, Puspendra Kumar Prabhu, Kumble Vinod Mukhopadhyay, Kunal |
author_facet | Chandra, Saket Singh, Dharmendra Pathak, Jyoti Kumari, Supriya Kumar, Manish Poddar, Raju Balyan, Harindra Singh Gupta, Puspendra Kumar Prabhu, Kumble Vinod Mukhopadhyay, Kunal |
author_sort | Chandra, Saket |
collection | PubMed |
description | Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. |
format | Online Article Text |
id | pubmed-4739524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47395242016-02-11 De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection Chandra, Saket Singh, Dharmendra Pathak, Jyoti Kumari, Supriya Kumar, Manish Poddar, Raju Balyan, Harindra Singh Gupta, Puspendra Kumar Prabhu, Kumble Vinod Mukhopadhyay, Kunal PLoS One Research Article Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. Public Library of Science 2016-02-03 /pmc/articles/PMC4739524/ /pubmed/26840746 http://dx.doi.org/10.1371/journal.pone.0148453 Text en © 2016 Chandra et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chandra, Saket Singh, Dharmendra Pathak, Jyoti Kumari, Supriya Kumar, Manish Poddar, Raju Balyan, Harindra Singh Gupta, Puspendra Kumar Prabhu, Kumble Vinod Mukhopadhyay, Kunal De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title | De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title_full | De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title_fullStr | De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title_full_unstemmed | De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title_short | De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection |
title_sort | de novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739524/ https://www.ncbi.nlm.nih.gov/pubmed/26840746 http://dx.doi.org/10.1371/journal.pone.0148453 |
work_keys_str_mv | AT chandrasaket denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT singhdharmendra denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT pathakjyoti denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT kumarisupriya denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT kumarmanish denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT poddarraju denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT balyanharindrasingh denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT guptapuspendrakumar denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT prabhukumblevinod denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection AT mukhopadhyaykunal denovoassembledwheattranscriptomesdelineatedifferentiallyexpressedhostgenesinresponsetoleafrustinfection |